
PAMAAL. GWRATION OF POSTFIX AND TREE FORMS. (U)
APR aI E DEW.L. S SeAMI moooIRso-c-SowLSIFIEEEEEEEEEEE

*", 11111112.2--,. 111122

'El,' 11 j51.8

11111 .25 I 1

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of SANDARDS 1963-A

Nb

69

7 V---

JU

E

WNW. . .

Computer Science Department

136 Lind Hall
Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

DTIC

JUN 2 9 982

o 140 /7

Parallel Generation of Postfix

and Tree Forms

by

Eliezer Dekel and Sartaj Sahni

Technical Report 81-4

April 1981

Cover design courtesy of Ruth and Jay Leavitt

Parallel Generation of Postfix and Tree Forms*
Eliezer Dekel and Sartaj Sahni

University of Minnesota

Abstract

-- >Efficient parallel algorithms to obtain the postfix and
tree forms of an infix arithmetic expression are developed.
The shared memory model of parallel computing is used.

Key ofords and Phrases: Arithmetic expressions, postfix,
infix, tree form, parallel computing, complexity.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced C
Justif ication -

By

ergo Distribution/

ftftAEo fAvail .:d/or

Dist 'p;cial

2Ri

A

*This research was supported in part by the Office of
Naval Research under contract N 0014-80-C-0650.

j t

S- 2 -

1. Intorduction

Much work has been done on the parallel evaluation of arith-
metic expressions. Some references are [I, £2], [8], E1i].
and 11J. Brent Cli, for instance, has shown that arith-
metic expression containing n, n > 1, operands; operators
(+, *, and /); and parenthesis -can be evaluated in
4log n+10(n-l)/p time when p processors are available.
Unfoitunately, little work seems to have been done on the
parallel generation of executable code for arithmetic
expressions. Fischer [5] considers the parsing of expres-
sions on a vector (pipelined) machine. No work has been
done on the parsing of expressions on parallel multiproces-
sor machines. In this paper, we address this problem.
Specifically, we study the following problems:

* (1) parallel generation of the postfix form
(2) parallel generation of the binary tree form

in both cases, we start with the infix form of the
expression. Further, we assume that the input infix expres-
sion is syntactically correct. The reader unfamiliar with
the postfix and tree forms of an expression is referred to
Horowitz and Sahni [6].

The study of the two problems cited above is motivated
by the following considerations:

(1) We could conceivably build a special purpose infix-to-
postfix chip that could be used like a peripheral on a
very high speed number cruncher. The use of this
parallel translator chip would speed compilation of
programs.

(2) Most code optimizers for single processor machines
start with the tree form of an expression. Hence a
high speed special purpose chip that performs the
translation from infix to tree form could be used in
the context of (I).

(3) If the program is to be executed on a parallel machine,
it can also be compiled on that machine using a paral-
lel compiler. Such a compiler will need to be able to
translate in parallel, from the infix form to a more
usable form. The postfix and tree forms are two such
forms. In fact, the parallel evaluation methods sug-
gested in [lj, [2j, £8], [10], and £II] all begin with
the tree form of the arithmetic expression.

(4) While the length of individual arithmetic expressions
in typical programs is small (Knuth [7]), Kuck [9] has
shown that optimizing compilers for parallel machines
can generate very long expressions even when the input
program contains only short expressions. Furthermore,
it is possible to view the entire program as a single
expression and obtain its postfix form.

-4

The model of parallel computation that we shall use
here is commonly referred to as the shared memory model
(SMM). This has the following characteristics:

(1) There are p processing elements (PEs) or processors.
These are indexed 0,l,...,p-I and an individual PE may
be referenced as in PE(i). Each PE is capable of per-
forming the standard arithmetic and logical operations.
In addition, each PE knows its index.

(2) There is a common memory that is shared by all the PEs.
All p PEs can read and write into this memory in the
same time instance. If two PEs attempt to read the
same word of memory simultaneously, a read conflict
occurs. Similarly, if two PEs attempt to simultane-
ously write into the same word of memory, a write con-
flict occurs. In this paper, we assume that read and
write conflicts are prohibited.

(3) The PEs are synchronized and operate under the control
of a single instruction stream.

(4) An enable/disable mask can be used to select a subset
of the PEs that are to perform an instruction. Only
the enabled PEs will perform the instruction. The
remaining PEs will be idle. All enabled PEs execute
the same instruction. The set of enabled PEs can
change from instruction to instruction .

Much work has been done on the design of parallel algo-
rithms using the SMM. The reader is referred to [31, [4] and
the references contained therein.

While one can talk of obtaining the postfix and tree
forms for an entire program, we shall limit our disucssion
here to simple expressions. These are permitted to contain
only operands (constants and simple variables), operators
(only the binary operators +, -, *, /, and T are permitted),
and delimiters ('(', and ')').

Like every other parallel algorithm, our algorithms are
based on a sequential algorithm. The sequential infix to
postfix algorithm we start from is that given by Horowitz
and Sahni L6j. This algorithm utilizes a stack as well as a
dual priority system. The instack priority (ISP) of an
operator or delimiter is the priority associated with the
operator or delimiter when it is inside the stack. The
incoming priority (ICP) is used when the operator or delim-
iter is outside the stack. For the operator and delimiter
set we are limited to,the priority assignment of Figure I is
adequate.

The infix to postfix algorithm of [6] is reproduced in
Figure 2. This algorithm assumes that the infix expression
is in E(l:n) where E(i) is an operator, operand, or delim-
iter, I < i < n (in practice, E(i) will be a pointer into a
symbol table): For example, the expression A+B*C is input

4

-a as E(l)=A, E(2)=+, E(3)=B, E(4)=*, and E(5)=C. The postfix
form is output in P(l:m), m < n. For our example, we shall
have P(l)=A, P(2)=B, P(3)=C, P(4)=*, and P(5)=+. The time
complexity of procedure POSTFIX is O(n).

operator/delimiter S__P ICP

1,unary+,unary- 3 4
*,/ 2 2
binary+, - 1 1

-00 0 -

Figure 1: Instack and incoming priorities.

line procedure POSrFiX(,P,n,m)
/Translate the infix expression E(l:n) into postfix//
//form. The postfix form is output in P(l:m)//
//'-oo' is used as bottom of stack character and has//lllsP=Oll

I declare n, E(l:n), P(l:m), top, STACK(, i,m
2 STACK(l) 4-- '-oo', top 4- 1 //initialize STACK//
3 m 4-
4 for i - I to n do
5 case
6 :E(i) is an operand: m 4- m+l; P(m) - E(i);
7 :E(i)=')':while STACK(top) # '(do

-77nstack until (//
d m4-- m+l;P(m) 4-STACK(top);top4-top-l
9 endwhile

top 4- top-I
1I :else: while iSP(STrACK(top) > ICP(E(i)) do
12 m4--m+Il;P(m) 4-STACK(top);top 4-top-I
13 endwnile
14 top 4- top+l, STACK(top) - E(i)
15 endcase
16 endfor
17 while top > 1 do //empty stack//
18 m 4- m+l; P(m) 4- STACK(top); top 4- top-I
19 endwhile
20 end POSTFIX

Figure 2 Sequential infix to postfix algorithm

4hile it is often difficult to parallelize algorithms
that utilize a stack, in Section 2 we shall see that the
algorithm of Figure 2 can in fact be effectivily parallel-
ized. In Section 3, we shall see how the tree form of an
infix expression may be obtained in parallel.

4 !

-5-

2. Parallel Generation of the Postfix Form

Let the infix expression be given in E(I:n) as described in
Section 1. We make the added assumption that E does not
cohItain superfluous parenthesis pairs. So, the forms ((A)),
(((A))), ((A+B)) are not permitted. Our strategy to deter-
mine the postfix form, in parallel, is to determine for each
i, a value AFTER(i) such that E(i) comes just after
E(AFTER(i)), I < i < n in the postfix form. The postfix
form of the expression A+i3*C is ABC*+. Since
E(1:5)=(A,+,B,*,C), AFrER(l:5)=(-,4,l,5,3). Note that B
comes just after E(AFTER(3))=E(l)=A; * comes just after
E(AFTSR(4))=E(5)=C; etc. Since the first token (a token is
either an operator or an operand or a delimiter) in postfix
form has no predecessor, its AFTER() value is undefined.
For convenience, we define AFTER(=0 for the token that is
to come first in the postfix form. So, for the above exam-. ple, AFTER(I:5)=(0,4,l,5,J).

In order to determine AFTEK(l:n), we need to first com-
pute the level L(i) of each token in the expression. Infor-
mally, the level of a token gives the depth of nesting of
parenthesis in which this token is contained. So, if a token
is not within any parenthesis, its level is 0. More for-
mally, the level, L, is defined by the algoritnm of Figure
'3.

I if E(i)=,('
step 1: G(i) 4-- -1 if E(i)=') ' ,l<i<n

I 0 otherwise

step 2: L(i) - G(j) , i i < n
j=l

step 3: L(i) -- L(i)+l if E(i)=')', I < i < n

Figure 3 Computation of L.

In Figure 4, we give an example arithmetic expression
together witn the L() values associated with each token (row
4).

Let us sequence through procedure POSTFIK (Figure 2) as
it works on the example expression of Figure 4. When i=1,
K(l)='(' and '(' gets put onto the stack. Next, i=2, and
0(2)=A is placed into the postfix form. When i=5, the post-
fix form has P(l:2)-(A,B) and the stack has the form -oo, (,
S. During this iteration, * is unstacked (as ISP(*)ICP(6(5))). ve shall say that E(3) gets unstacked by E(5)-.

E(5) gets added to the stack and on the next iteration,
E(6)=C is placed in the postfix form. When i=1d, the stack
has the form -o, 4, t, (, -, *, 1, 1 and
P(1:9)=(A,8,*,C,D,E,F,G,H). During this iteration, E(16)=t,
E(14)=?, E(12)=*, and E(l0)=- get unstacked (in that order).
L.e., E(16), E(14), 6(12), and E(i0) get unstacked by E(1d).
Furthermore, E(10) is the last operator to get unstacked by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

E (A * B + C + (D - E * F + G + H) * I ((J + K) * L) + M)

G 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0-1 0 0 0 1 1 0 0 0-1 0 0-1 0 0-1

L 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 3 3 3 3 3 2 2 2 1 1 1

IcP 4 2 1 4 4 1 2 4 4 0 2 1 44 1 0 2 01 0

ISP 0 2 1 3 0 1 2 3 3 3 2 1 0 0 1 * 2 1 U

U 5 21 19 18 18 18 18 21 31 27 30 33

LU 0 3 0 0 0 0 0 10 7 5 0 25 0 28 21 31

AFTER U 0 4 2 19 3 10 U 6 12 9 14 11 16 13 17 15 0 20 7 283 U 5 26 24 U 29 75 U 32 1 U

Position in P U 1 3 2 17 4 14 U 5 13 6 12 7 11 8 10 9 3 16 15 23• U 18 20 19 • 22 21 U 25 24 U

Figure 4

For each i such that E(i) is an operator, we may define
U(i) to be the index in E of the operator or delimiter that
causes B(i) to get unstacKed. In case E(i) gets unstacked
during the while loop of lines 17-19 of procedure POSTFLX,
tnen U(i) = n+l. For our example, U(3) = 5, U(10) = U(12) =
U(14) U(16) = 18. Also, for each i such that E(i) is
either an operator or a right parenthesis, we may define
LU(i) to be the index of the last operator that gets
unstacked by E(i). If no operator is unstacked by E(i),
then LU(i) is set to 0. For our example, LU(3)=0, LU(5)=J,
LU(7)=LU(10)=LU(12) = LU(14)=LU(16)=, and LU(18)=l0.

Continuing with our example, we see that when i=19,
P(I:3)=(A,B,*,C,D,E,F,G,ltu,,*,-), and the stack has the
form -oo,+,t. At this time, E(7)=t is unstacked and E(19)=*
is stacked. So, LU(19)=7 and U(7)=19. Rows 6 and 7 of Fig-
ure 4 give the U, and LU values for all the operators and
delimiters of our example. Rote that U is defined only for
operators and LU only for operators and right parenthesis.

An examination of procedure POSTFIX and our definition
of the level L of a token, reveals that if E(i) is an

Wi _____

7

operator, then:

L(i) = least j, j > i such that ISP(E(i)) > ICP(e(j))
and L(i)=L(j). If there is no j satisfying this
requirement, then U(i)=n+l.

From the definition of U, it follows that if E(i) is an
operator or a right parenthesis, then LU(i) is given by:

LU(i) = least j, j < i such that U(j)=i. If there is no

j with U(j)=i, then LU(i)=0.

From U and LU, AFTER may be determined as below.

case 1: E(i) is an operand.

In this case, we determine the largest j, j < i such
that E(j) is either an operand or LU(j) is defined and
greater than 3 (note that as extraneous parenthesis pairs
are not permitted, if E(j)=')' then LU(j) > 0). Such a j
does not exist iff E(i) is the first operand in the expres-
sion. From procedure POSTFIX and our definition of LU, it
follows tnat

J if no j as above exists

AFrZR(i) = j if E(j) is an operand

LU(j) otherwise

case 2: E(i) is an operator.

in this case, we see that if there exists a j such that
j > i and U(j)=U(i), then AFTER(i) is the smallest j with
this property. So, in our example expression, U(l0) = U(12)
= U(14) = U(16) = 18. Also, in P, E(10) comes immediately
after E(12) which comes immediately after E(14). E(14)
comes immediately after E(16).

For E(16), however, there is no j, j > 16 and U(j)
U(16). For operators with this property, there are two pos-
sibilities: either U(i)-l is an operand or U(i)-l is a right
parenthesis. If U(i)-l is an operand, then E(U(i)-I) is the
token placed in P just before the unstacking caused by E(i)
Degins. Hence, AFTER(j) = U(i)-l. if E(U(i)-1) is a right
parenthesis, then this right parenthesis would have caused
at least one operator to get unstacked (by assumption,
extraneous parenthesis pairs are not permitted). Hence,
LU(U(i)-1) 0 0 and E(LU(U(i)-l)) is the operator that
immedidt.,Ly precedes E(i) in PE. So, we get:

j 4- least j, j > i and U(j)=U(i)

*'1

U(i)-i if j is undefined and
E(U(i)-i)is an operand

AFTER(i) = LU(U(i)-1) if j is undefined

and E(U(i)-l)=)'

if j is defined

Row 8 of Figure 4 gives the AFTER values for all the
operators and operands in our example expression. The AFTER
values link the E(i)s in the order they should appear in the
postfix form. This linked list is shown explicitly in Fig-
ure 5. From this linked list, we wish to determine the
position of each operator and operand in the postfix form.
For one of the operands, i.e., the one with AFTER(i)=@, this
position is already known (it goes into P(l)). With each
E(i), let us associate a one bit field K(i). K(i)=O iff the
position of E(i) in P(i) has not been determined. ini-
tially, K(i)=J for all but one of the tokens (i.e. the one
with AFTER(i)W0).

One may verify that the algorithm of Figure 6, changes
all the AFTER values so that on termination E(i) is to
occupy position AFTER(i) in P (if E(i) is a delimiter then
AFTER(i) is undefined and E(i) does not appear in the post-
fix form).

2 4 3 6 9 11 13

" Figure 5

'rO get a feel for how the algorithm of Figure 6 works,
consider the linked list of Figure 7(a). This has 8 nodes
in it. AFTER() is shown by an arrow or link. Initially,
the first (leftmost) node has K()1; tne remaining nodes
have K()= . The K() values are shown outside (and below)
the nodes. N'ode indices ara shown outside and above the

AI BIIIIIIIIIIIIIII ,IIIII

9

step I //initialize//
case

:AFTER(i) is undefined: K(i) 4-- undefined
:AFTZH(i)=0 : K(i) 4-- 1; AFTER(i) 4-- 1
:else: K(i) 4--

end case

step 2 //update AFTER//
for v -- I to F log n 1 do

if K(i)=O then j e-- AFTER(i)
AFTER(i) 4- AFTJER(j)
if K(j)=1 then K(i) 4- 1
AFTER(i) 4- AFTER(i)+2vI
endif

endif
end for

Figure 6 Algorithm to update AFTER

Vnode. In the first iteration of step 2, the linked list
splits into two as shown in Figure 7(n) and AFTER(2) is
updated to 2. This agrees with the fact tnat node 2 is tne
second node (from the left) in Figure 7(a). In the next
iteration, each of the two lists of Figure 7(o) split into
two and AFTER(4) is set to 3 and AFTER(l) is set to 4.
Again, we see that nodes 4 and I are respectively the third
and fourth nodes in Figure 7(a). In the last iteration the
four lists of Figure 7(c) split into 2 eacn giving the con-
figuration of Figure 7(d). All the AFTER() values now give
the position of the respective node in the original linked
list.

The correctness of the updating algorithm of Figure 6
may be established formally by providing a proof by induc-
tion on the length of the initial linked list. We omit this
proof here.

Once the AFTER values have been updated as described
above, the postfix form P is obtained by executing the fol-
lowing instruction:

if AFTER(i) is defined then P(AFTER(i)) 4-- E(i)

Complexity Analyisis

First, let us consider the computation of the levels L
(Figure 3). Step 1 can be done in O(1) time using n PEs
(each PE is assigned to compute a different G(i)). It can
also oe done in O(log n) time using n/log n PEs (each PE
sequentially computes log n of the Gos). The L(i)s of step
2 may be computed in U(log n) time using n/log n PEs and the
partial sums algorithm of 4i. Finally, step J can be

-l - ,1 -

6 I 2 4 1 3 5, 8 7 INDEX

0 0 0 0 0 0 0 K

(a)

6 4 3 8 2 1 5 7

1 0 0 0 1 0 0 0

(b)

6 3 4 8 2 5 1 7

1 0 1 0 1 0

(c)

6 3 4 8 2 5 1 7

(d)

Figure 7

preformed in O(loy n) time using n/log n PEs. Hence, the
levels L() may be obtained in O(Iog n) time using n/log n
PLs.

Next, consider the computation of U and LU. One possi-
bility is to use mp PEs to first make m copies of each of
the p operators and right parenthesis in E (m is the number
of operators in E). This takes O(log m) time. Each opera-
tor now has a copy of the operators and right parenthesis in
E for itself. Each operator E(i) is assigned p PEs to work
with. These are first used to eliminate operators and right
parenthesis E(j) witn j < i. Next, the level and ISP of
E(i) is transmitted to the remaining operators and right

parenthesis. This takes O(log p) time with p PEs. Opera-
tors and right parenthesis with a different level number or
with £CP > ISP (E(i)) are eliminated. The operators and
right parenthesis not yet eliminated are candidates for
U(i). The one with least j can be determined in O(log p)
time using a binary tree comparison scheme and p PEs. If
there are no candidates, U(i)=n+l. LU may now be determined
in a simil r manner. This strategy to compute U and LU
takes O(n) PEs and O(log n) time. Using the techniques of
[4J it can be made to run in O(log n) time using only
O(n /log n) PEs.

An alternative stategy is to first collect togetner all
operators and right parenthesii that have the same level
number. This can be done in O(log n) time using n PEs as
follows. First, each left parenthesis determines the posi-
tion of its matching right parenthesis. This is done by
simply sorting the left and right parenthesis by their level
number. If a stable sort is used, each left parenthesis
wilL be adjacent to its matching right parenthesis following
the s~rt (Figure 8). The sort can be accomplished in
o(log n) time using n PEs L13i. Now, each left parenthesis
can determine the address, M(i), of its matching right
parenthesis.

L 1 2 2 2 2 2 3 3 2 1(() () (()))
POSITION a b c d e f g h i j

(a) before sort

1 1 2 2 2 2 2 2 3 3
() () (C) () (C)
a j b c d e f i g h

(a) after sort

Figure 8

Once i(i) has been determined for each left parenthesis
- E(i), we can link together all operators and right

parentnesis with the same level as needed in the computation
of U. There are only two possibilities for any operator i.
These are:

-12-

(a) (i+l)='(': In this case, E(i) is linked to M(i+l)+Il.
(b) E(i+l) A '(': In this case i+2=n+l or E(i+2) is, an

.. operator. Regardless, S(i) is linked to i+2.

Performing this linkage operation on the example of
Figure 4 gives the linked lists of Figure 9. Now, each
linked list can be treated independently. For operators
with the highest ISP (i.e., 1), the U value is obtained by
collapsing together consecutive chains of t so that all T
point to the nearest non t. The U value equals the link
value. So, U(7) = 19, U(14) = U(16) = 18. For operators
with the next highest I3P, the U values are obtained by
removing all nodes representing the operator t. The link
values give the U value. Doing this on the lists of Figure
9, yields the lists of Figure l. So, U(3)=5, U(19)=21,
U(12)=ld,

3 5 7 19 21 31 33

10 12 14 16 18

25 27

28 30

Figure 9

U(28)=JO. Now, by eliminating all nodes tnat represent *
and / and collapsing the lists we can determine the U value
for the next ISP class. We obtain U(5)=21, U(21)=32,
U(10)=l, and U(25)=27. Each elimination and collapsing
operation above can be performed in O(log n) time using n
PEs and the strategy used in Figure 6 to update AFTER.
Since the number of ISP classes is a constant, the time
needed to determine U is O(log n).

It should be evident that LU can be computed during the
computation of U. Each operator and right parenthesis keeps

I

. . . -.. Vi . - -i ,,

- 13 -

3 5 19 21 31 33

10 12 18

25 27

28 30

Figure I0

track of the farthest operator it unstacks from each ISP
class. The initial values of AFTER() may now be computed.
First, each operand determines the nearest (on its left)
cinary operator, right parenthesis, and operand. These are
shiown in Figure 11 for our example of Figure 4. Zeroes
indicate the absence of a nearest quantity on the left.
These three sets of nearest value can be determined in O(log
i1) time using n PEs. For example, to get the nearest
operands, we eliminate all E(i)s that are not an operand.
The remaining E(i)s are concentrated to the left. This
enables each operand to determine its nearest left operand.
Next, the operands are distributed back to their original
spots (see C12] for an O(log n) distribution algorithm).

if E(i) is an operand and has no nearest operand on the
left, AFTER(i)=O. If the nearest binary operator (on the
left) has LU() > 4, then AFTER(i) equals this LU value. if
(i) has a nearest right parenthesis (on the left) then

AFTE(i) is tihe LU value of this parenthesis. Otherwise,
AFTEM(i) is the location of the nearest operand on the left.

if E(i) is an operator, we can determine the smallest
j, j > i such that U(j)=U(i) during the computation of U and
LU. So, if such a j exists, AFTER has already been com-
puted. If no such j exists, AFTER(i) is to be set to either
U(i)-i or LU(U(i)-I). Both these quantities are already
known. So, the computation of AFTER for operators takes

4 -

!L4

O(W) additional time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

E A * B + C + (D E*FGH) * ((J + K *L)+ M)

nearest binary 0 3 5 7 10 12 14 16 19 21 25 28 31
operator

nearest right 0 0 0 0 0 0 0 0 18 18 18 27 30
parenthesiq

nearest operand 0 2 4 6 9 11 13 15 17 20 24 26 29

Figure 11

rhe updating of AFTER (Figure 6) requires only 0(log n)
time and n PEs. The formation of P takes 0(l) time and n
Pes. Hen 5e, using n PEs, the postfix form may be computed
in O(log n) time. The complexity is dominated by the sort
step. Another complexity measure worth computing is the EPU
(effectiveness of processor utilization). This is:

EPU=

complexity of fastest sequential algorithm
complexity of parallel algorithm * no. of PEs

=0(n
log n*n

log n

J. Parallel Generation of the Tree Form

As mentioned in Section 1, most code optimizers work on the
tree form of an expression. This tree form is easily
obtained from the postfix form by considering the algorithm
to evaluate postfix expressions. This algorithm is given in
Figure 12 (see [6] for an explanation).

--] Define the degree of an operator to be the number of

*operands it needs. Let D(i) be the degree of operator P(i).
So, D(P(i))=i if P(i) is unary; D(P(i))=2 if P(i) is a
binary operator. Define 4(i) as below:

i iif P(i) is an operandb() = I
Il-D(i) otherwise

mor" alik 6

- 15 -

procedure EVAL(P,n)
//valudte the postfix expression P(1:n)//
declare n, P(I:n),i,STACK
initialize STACK
for i -- I to n do

case
:PTi) is an operand : Put P(i) on the STACK
:else : remove as many operands from the stack as

needed to compute P(i). Evaluate P(i) with
these operands and put the result on the
STACK

endcase
endfor

end EVAL
Figure 12

Note that W(i) gives the change in the stack neight
when procedure EVAL processes P(i) (an operand increases the
height by 1 while an operator reduces it by D(i)-l). The
stack height, H(i), following the processing of P(i) is
given by:

ii (Jl) 1(i)= i W(j)

j=1

Let us make the simplifying assumption that we have no
operator of degree greater than 2.

The tree form of the expression P(l:n) consists of n
nodes. Each node has three fields: LCHLLD,RCHILD, and P.
It is easy to see that LCHILD(i)=RCHILD(i)=0 for every i
such that P(i) is an operand. Also, if P(i) is an operator,
then RCdiOd(i)=i-l. If P(i) is a unary operator,
LCHILD(i)=0. This leaves us with the task of determining
LClILD(i) when P(i) is a binary operator. It is not too
difficult to see that in this case, LCILD(i) is tne largest
j, j < i such that H(j)=H(i).

The LCHILD values for binary operators can therefore be
obtained by first computing i(i) as given by (3.1). This
can be done in O(log n) time using either n or n/log n P~s
and tne partial sums algorithm of [4]. Figure 13 shows .he
postfix form of our example of Figure 4. The WJ values are
given in row 2 and the H values in row 3.

Next the H(i) are sorted using a stable sort method.
This takes O(log n) time and O(n) PEs [lJ. Tais sort
orings a parent and its left child (if the parent is a
binary operator) together. So, in our example P(7) and P(9)
are brought together. So also are P(6) and P(10); P(5) and
P(11); P(4) and P(12); etc. Hence every binary operator can
now easily determine its left child. The expression tree ___________II

1 2 3 4 56781111123415 16 1719 2021 2223 2425

Prefix P A8 C D E FG H + + t *+J K +L M +

H 12 12 34 56 76 54 32 32 12 32 32 1 21

CHILD 0 01 00 0 0 0 0 81112 01415 0 018 02021 E23

CHILD 0 0 .0 0 0 0 0 0 0 7 6 5 4 3 0 13 2 0 0 17 0 19 16 E 22

Figure 13

~--~+

Im

Figure 14

- 17 -

that results for our example is shown in Figure 14.

The additional time needed to obtain the tree is O(log
n) and the number of PEs needed is n. Using the postfix
algorithm of Section 2,2 the tree form may be obtained from
the infix form in O(log n) time using n Es. The EPU of the
resulting tree form algorithm is O(1/log n).

4. Conclusions

[NWe have shown that it is possible to effectively parallelize
the postfix and ree form algorithms. Our parallel algo-
rithms run in O(log n) time when n PEs are available. if
only n/k PEs are available, our 1igorithms can still be
used. The complexity will be Q(k log n).

The results of this paper nicely complement the work
reported on the parallel evaluation of expressions (see [I],
[2J, C8J, Li], and [llJ).

II

References

1. Brent, R., "The parallel evaluation of general arithmet-

ic expressions,". J. ACM 21, 2, April 1974 pp. 201-206.
2. Brent, R., Kuck, D.J., and Maruyama, K.M., "The parallel

evaluation of arithmetic expressions witnout divisions,"
iEiE Trans. Comput. C-22, May 1973, pp. 532-534.

J. Dekel, E., and Sahni, S., "Parallel scheduling algo-
rithms," University of Minnesota TR 81-i.

4. Dekel, E., and Sahni, S., "Binary trees and parallel
scheduling algorithms," University of Minnesota TR 8-
19.

5. Fischer, C.N., "On parsing and compiling arithmetic ex-
pressions on vector computers." TOPLS Vol. 2, No. 2,
April 1980, pp. 2J3-224.

6. Horwitz, E. and Sahni, S., "Fundamentals of data struc-
tures," Computer Science Press, Patomac, MD, 1976.

7. Knuth, D.E., "An empirical study of FORTRAN programs,"
Software 1, April 1971, pp. 105-133.

8. Kuck, D.J., "Evaluating arithmetic expressions of n
atoms and k divisions in ((1og 2n+2 log2 k)+ c steps,
manuscript, March 1973.

9. Kuck, D.J., "Parallelism in ordinary programs," Proc.
Symposium on Compleixty of Sequential and Parallel Su-
iuericdl Algorithms, Carnegie-Mellon, Pittsburgh, PA, May
1973. Academic Press, New York.

id. Kuck, D.J., and Maruyamd, K.M., "The parallel evaluation
of arithmetic expressions of special forms," Rep.
RC4276, IBM Res. Center, Yorktown Heights, NY, March
1973.

11. Maruyama, K.M., "On the parallel evaluation of polynomi-
als," IEEE Trans. Comput.,C-22, Jan. 1973, pp. 2-5.

12. Nassimi, D. and Sahni, S., "Data broadcasting in SIMD
computers," IESE TRANS. on Computers. C-J, no. 2., Feb
1981, pp 101-107.

13. Preparata, F.P., "New parallel-sorting schemes," IEEE
Trans. on Computers, C-27, No. 7,July 1978, pp. 669-
673.

I'ar

UNCLASSIFIED

1ECU ITY CLASSIFICATION OF THIS PAGE ("en Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 1.GOVT ACCiSON NO ECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle) S. TYPE OF REPORT I PERIOD COVERED
Technical Report

Parallel Generation of Postfix and Tree
Forms April 1981

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR() S. CONTRACT OR GRANT NUMBER(a)

Eliezer Dekel and Sartaj Sahni N00014-80-C-0650

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Computer Science Department AREA & WORK UNIT NUMBERS

University of Minnesota
136 Lind Hall, 207 Church St. SE, Mpls., MN 55451

1I. CONTROLLING OFFICE NAME AND ADDqESS 12. REPORT DATE

Department of the Navy April 1981

Office of Naval Research 13 P

Arlington, Virginia
22217

14. MONITORING AGENCY NAiE & A07RESS(if - 'flert fram Controllln4 Office) IS. SECURITY CLASS. (of this repOrt)

UNCLASSIFIED

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

I. KEY WORDS (Continue on reverse aide If necesswr and Identlf by block number)

Arithmetic expressions, postfix, infix, tree torm, parailel computing,

complexity.

20. ABSTRACT (Continue on reverse dide if neceea' m d Identify by block nuaiber)

Efficient parallel algorithms to obtain the postfix and tree forms of an

infix arithmetic expression are developed. The shared memory model of parallel

computing is used.

I-
DOtM 1473 Eo,TON OF 1 NOV65 iS OsSOL.TE

D/ 012. FJA

